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Real function reconstruction from sparse Fourier samples

Marius Wischerhoff1,∗
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In this paper we use the Prony method to reconstruct structured, real-valued functions from the smallest possible number
of equidistantly distributed Fourier samples. In particular, we consider characteristic functions in R2 whose supports are
unit-height polygons in the plane with N vertices. We show that these functions can be recovered by 3N Fourier samples.
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1 Introduction

We want to show how the reconstruction of some structured, real-valued functions from a smallest possible set of Fourier data
can be achieved by using the Prony method. In this paper, we will examine the case of unit-height polygons in the plane, i.e.
characteristic functions of a polygonal domain in R2.

The Prony method is a method for parameter estimation for exponential sums, see e.g. [4], and is equivalent to the annihi-
lating filter method, [7]. Consider a function P (ω) of the special form

P (ω) =

N∑
j=1

cje
−iωfj , (1)

where the coefficients cj and the frequencies fj (j = 1, . . . , N ) are real numbers with cj 6= 0 and f1 < f2 < . . . < fN .
If the number N of summands in (1) is known, we can uniquely determine the unknown parameters cj and fj from N + 1

function values P (`h), ` = 0, . . . , N , where h is a positive constant such that hfj ∈ [−π, π) for all j ∈ {1, . . . , N}. The
Prony method also works if the number N is not known. Then, one needs an upper bound M ≥ N and M +1 function values
P (`h), ` = 0, . . . ,M and finds N by computing the rank of the Toeplitz matrix TM+1 := (P (h(`−m)))Mm,`=0, see [4–6]. If
the sampling values are perturbed, the stability of the method has to be improved, see e.g. [2].

In [5], the reconstruction of structured, real-valued functions from a smallest possible set of Fourier samples using Prony’s
method has already been considered for some other classes of functions. In the univariate case the Prony method has been
successfully applied to the reconstruction of step functions, non-uniform spline functions or non-uniform translates of a low-
pass filter function. For the case of bivariate functions we can similarly reconstruct tensor products of non-uniform spline
functions or non-uniform translates of radial functions, where the approach for the latter class of functions is also applicable
to d-variate functions with d > 2, see [5].

The above mentioned function classes have in common that the Fourier data can be represented by exponential sums, i.e.
by linear combinations of exponential terms, see [5]. In order to reconstruct the original functions, we can therefore exploit
this special structure of the Fourier data by using the Prony method.

In [1], the authors proposed a method for reconstruction of polygonal shapes from moments. Now, in the present paper, we
show how unit-height polygons in the plane can be reconstructed from sparse Fourier samples using Prony’s method.

2 Reconstruction of polygonal shapes

Let us consider a function f of the special form

f(x) = 1D(x), x ∈ R2, (2)

where 1D is the characteristic function of the domain D ⊂ R2. Here, D is a polygonal domain with the N vertices vj ∈ R2,
j = 1, . . . , N .

We number the vertices of the polygon anticlockwise and use the notation η̃j for the perpendicular vector to the edge
vj+1 − vj of the polygon which is pointing outward. Further, we use the convention

vN+1 := v1, v0 := vN , η̃0 := η̃N .

Then we get

f̂(ξ) =
1

‖ξ‖22

N∑
j=1

(
η̃Tj ξ

(vj+1 − vj)T ξ
−

η̃Tj−1ξ

(vj − vj−1)T ξ

)
e−iξT vj (3)
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as the representation for the Fourier transform of f if ξ 6= 0 and (vj+1− vj)T ξ 6= 0 for all j ∈ {0, . . . , N}, see [3], where aT

denotes the transpose of a ∈ R2.
Hence, the Fourier data can be expressed in the form of an exponential sum and we can use this structure to determine the

parameters of the original function f (i.e. the vertices and the order of the vertices) from sparse Fourier samples by applying
the Prony method. Let us assume that no edge of the polygon D is parallel to the x-axis or the y-axis in the plane. Then we
have

(vj+1 − vj)T ξ 6= 0 for all j ∈ {0, . . . , N}

for vectors ξ of the form ξ = (ξ1, 0)
T or ξ = (0, ξ2)

T with ξ1, ξ2 6= 0, and the formula in (3) can be applied.
Let vj := (αj , βj)

T for all j ∈ {1, . . . , N}. With the further assumption that the components αj , j = 1, . . . , N, are
pairwise different and that the components βj , j = 1, . . . , N, are pairwise different we can prove the following theorem by
extending the approach in [5].

Theorem 2.1 Let the before mentioned assumptions on the vertices vj of the polygon D be satisfied, and let h > 0 such
that h‖vj‖2 < π for all j ∈ {1, . . . , N}. Then the polygon D can be uniquely recovered from the 3N Fourier samples f̂(ξ)
with

ξ ∈ {(`h, 0), (0, `h), (cos(ϕπ)`h, sin(ϕπ)`h)}, ` = 1, . . . , N,

where ϕ ∈ (0, 1) \ { 12} needs to be chosen suitably.
The idea of the proof is as follows. First, we compute the vertices vj of D using an approach similar to [5, Section 4.2],

i.e., we apply the Prony method to sampling values from three straight lines through the origin, where the parameter ϕ is
determined adaptively. Afterwards, these vertices have to be ordered, since the polygon D can be concave. But by applying
the Prony method in order to compute the vertices, we also obtain coefficients for a representation of f̂ similar to (3). We can
use these coefficients to order the computed vertices.

We want to show the applicability of this approach with an example. Figure 1 presents a unit-height polygon in the plane
with the five vertices given in Table 1 (i.e. N = 5). Observe that the difference of the first components of the second and fifth
vertex is rather small, as well as the difference of α1 and α3 and the difference of β1 and β4. For the reconstruction process
15 sampling values f̂(ξ) with sampling locations ξ according to Theorem 2.1 are considered, where the stepsize h is chosen
as h = 0.4. Further, we use ϕ = 0.25. Table 1 also presents the absolute reconstruction errors |αj − α∗

j | and |βj − β∗
j |

(j = 1, . . . , 5), where α∗
j and β∗

j denote the values for the reconstructed vertex components.
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Fig. 1: Original function of the form (2) determined by
vertices vj given in Table 1.

Table 1: Vertices vj = (αj , βj)
T of the polygon given in Figure 1

and reconstruction errors, where h = 0.4 and ϕ = 0.25.

j αj |α∗
j − αj | βj |β∗

j − βj |
1 1 1.601 · 10−9 3 2.792 · 10−7

2 1.95 2.677 · 10−7 2 5.788 · 10−12

3 1.1 5.524 · 10−9 0.4 1.197 · 10−13

4 4 1.403 · 10−13 3.005 1.68 · 10−7

5 1.96 4.961 · 10−7 4 7.994 · 10−13

References
[1] M. Elad, P. Milanfar, and G. H. Golub, IEEE Trans. Signal Process. 52(7), pp. 1814–1829 (2004).
[2] F. Filbir, H. N. Mhaskar, and J. Prestin, Constr. Approx. 35, pp. 323–343 (2012).
[3] J. Komrska, J. Opt. Soc. Am. 72(10), pp. 1383–1384 (1982).
[4] T. Peter, D. Potts, and M. Tasche, SIAM J. Sci. Comput. 33(4), pp. 1920–1947 (2011).
[5] G. Plonka and M. Wischerhoff, How many Fourier samples are needed for real function reconstruction?, J. Appl. Math. and Comput.,

to appear (2013).
[6] D. Potts and M. Tasche, Parameter estimation for multivariate exponential sums, Electron. Trans. Numer. Anal., accepted (2013).
[7] M. Vetterli, P. Marziliano, and T. Blu„ IEEE Trans. Signal Process. 50(6), pp. 1417–1428 (2002).

Copyright line will be provided by the publisher


